L-Fuzzy Filters of a Poset

Berhanu Assaye Alaba, Mihret Alamneh and Derso Abeje

Abstract—Many generalizations of ideals and filters of a lattice to an arbitrary poset have been studied by different scholars. The authors of this paper introduced several generalizations of L-fuzzy ideal of a lattice to an arbitrary poset in [1]. In this paper, we introduce several L-fuzzy filters of a poset which generalize the L-fuzzy filter of a lattice and give several characterizations of them.

Index Terms—Poset, Filter, L-fuzzy closed filter, L-fuzzy Frink filter, L-fuzzy V-Filter, L-fuzzy semi-filter, L-fuzzy filter, I-L-fuzzy filter.

I. INTRODUCTION

W E have found several generalizations of ideals and filters of a lattice to arbitrary poset (partially ordered set) in a literature. Birkhoff in [2, p. 59] introduced a closed or normal ideals who gives accredit to the work of Stone in [3]. Next, in 1954 the second type of ideal and filter of a poset called Frink ideal and Frink filter have been introduced by O. Frink [4]. Following this P. V. Venkatanarasimhan developed the theory of semi ideals and semi filter in [5] and ideals and filters for a poset in [6], in 1970. These ideals (respectively, filters) are called ideals (respectively, filter) in the sense of Venkatanarasimhan or V-ideals (V-filters) for short. Later Halaś [7], in 1994, introduced a new ideal and filter of a poset which seems to be a suitable generalization of the usual concept of ideal and filter in a lattice. We will simply call it ideal (respectively, filter) in the sense of Halaš.

Moreover, the concept of fuzzy ideals and filters of a lattice has been studied by different authors in series of papers [8], [9], [10], [11] and [12]. The aim of this paper is to notify several generalizations of *L*-fuzzy filters of a lattice to an arbitrary poset whose truth values are in a complete lattice satisfying the infinite meet distributive law and give several characterizations of them. We also prove that the set of all *L*-fuzzy filters of a poset forms a complete lattice with respect to point-wise ordering " \subseteq ". Throughout this work, *L* means a non-trivial complete lattice satisfying the infinite meet distributive law: $x \land \sup S = \sup\{x \land s : s \in S\}$ for all $x \in L$ and for any subset *S* of *L*.

II. PRELIMINARIES

We briefly recall certain necessary concepts, terminologies and notations from [2], [13] and [14]. A binary relation " \leq " on a non-empty set Q is called a partial order if it is reflexive, anti-symmetric and transitive. A pair (Q, \leq) is called a partially ordered set or simply a poset if O is a nonempty set and " \leq " is a partial order on Q. When confusion is unlikely, we use simply the symbol Q to denote a Poset (Q, \leq) . Let Q be a poset and $S \subseteq Q$. An element x in Q is called a lower bound (respectively, an upper bound) of S if x < a (respectively, x > a) for all $a \in S$. We denote the set of all lower bounds and upper bounds of S by S^{l} and S^{u} , respectively. That is $S^{l} = \{x \in Q : x \leq a \ \forall \ a \in S\}$ and $S^{u} = \{x \in Q : x \ge a \ \forall \ a \in S\}$. S^{ul} shall mean $\{S^{u}\}^{l}$ and S^{lu} shall mean $\{S^l\}^u$. Let $a, b \in Q$. Then $\{a\}^u$ is simply denoted by a^{u} and $\{a,b\}^{u}$ is denoted by $(a,b)^{u}$. Similar notations are used for the set of lower bounds. We note that $S \subseteq S^{ul}$ and $S \subseteq S^{lu}$ and if $S \subseteq T$ in Q then $S^l \supseteq T^l$ and $S^u \supseteq T^u$. Moreover, $S^{lul} = S^l$, $S^{ulu} = S^u$, $\{a^u\}^l = a^l$ and $\{a^l\}^u = a^u$. An element x_0 in Q is called the least upper bound of S or supremum of S, denoted by *supS* (respectively, the greatest lower bound of S or infimum of S, denoted by infS if $x_0 \in S^u$ and $x_0 \leq x$ $\forall x \in S^u$ (respectively, if $x_0 \in S^l$ and $x \leq x_0 \ \forall x \in S^l$). An element x_0 in Q is called the largest (respectively, the smallest) element if $x \le x_0$ (respectively, $x_0 \le x$) for all $x \in Q$. The largest (respectively, the smallest) element if it exists in Q is denoted by 1 (respectively, by 0). A poset $(Q \leq)$ is called bounded if it has 0 and 1. Note that if $S = \emptyset$ we have $S^{lu} = (\emptyset^l)^u = Q^u$ which is equal to the empty set or the singleton set $\{1\}$ if Q has the largest element 1

Now we recall definitions of filters of a poset that are introduced by different scholars.

Definition 2.1 (Dual of [2]): A subset F of a poset (Q, \leq) is said to be a closed or a normal filter in Q if $F^{lu} \subseteq F$.

Definition 2.2 ([4]): A subset F of a poset (Q, \leq) is said to be a Frink filter in Q if $S^{lu} \subseteq F$ whenever S is a finite subset of F.

Definition 2.3 ([5]): A non-empty subset F of a poset (Q, \leq) is called a semi-filter or an order filter of Q if $a \leq b$ and $a \in F$ implies $b \in F$.

Definition 2.4 ([6]): A subset F of a poset (Q, \leq) is said to be a V-filter or a filter in the sense of Venkatannarasimhan if F is a semi-filter and for any nonempty finite subset S of F, if infS exists, then $\inf S \in F$.

Definition 2.5 ([7]): A subset F of a poset (Q, \leq) is called a filter in Q in the sense of Halaš if $(a,b)^{lu}$ contained in F whenever $a, b \in F$.

Note that every filter of a poset Q defined above contains Q^u . *Remark 2.6:* The following remarks are due to R. Halaš and

J. Rachŭnek [15].

- If (Q ≤) is a lattice then a non-empty subset F of Q is a filter as a poset if and only if it is a filter as a lattice (Q ≤).
- If a poset does not have the largest element then the empty subset Ø is a filter in (Q ≤) (since Ø^{lu} = (Ø^l)^u = Q^u = Ø).

Manuscript received June 25, 2018; accepted March 15, 2019.

B.A. Alaba and M. Alamneh are with the College of Science, Bahir Dar University, Bahir Dar, Ethiopia. E-mails: berhanu_assaye@yahoo.com, deab02@yahoo.com

D. Abeje is with the Department of Mathematics, College of Science, University of Gondar, Gondar, Ethiopia. E-mail: mihretmahlet@yahoo.com

Definition 2.7: Let A be any subset of a poset Q. Then the smallest filter containing A is called a filter generated by A and is denoted by [A). The filter generated by a singleton set $\{a\}$, is called a principal filter and is denoted by [a]

Note that for any subset *S* of *Q* if $\inf S$ exists then $S^{lu} = [\inf S)$.

The followings are some characterizations of filters generated by a subset S of a poset Q. We write $T \subset \subset S$ to mean T is a finite subset of S.

- 1) The closed or normal filter generated by *S*, denoted by $[S)_C$, is $[S)_C = \bigcup \{T^{lu} : T \subseteq S\}$ where the union is taken over all subsets *T* of *S*.
- 2) The Frink filter generated by *S*, denoted by $[S)_F$, is $[S)_F = \bigcup \{T^{lu} : T \subset \subset S\}$, where the union is taken over all finite subsets *T* of *S*
- 3) Define B₁ = ∪{(a,b)^{lu} : a, b ∈ S} and B_n = ∪{(a,b)^{lu} : a, b ∈ B_{n-1}} for each positive integer n ≥ 2, inductively. Then the filter generated by S in the sense of Halaš, denoted by [S)_H, is [S)_H = ∪{B_n : n ∈ N} where N denotes the set of positive integers.
- 4) If a ∈ Q then [a) = {x ∈ Q : x ≤ a} = a^l is the principal ideal generated by a.

Definition 2.8 ([7]): A filter F of a poset Q is called an *l*-filter if $(x,y)^l \cap F \neq \emptyset$ for all $x, y \in F$.

Note that an easy induction shows that *F* is an *l*-filter if $B^l \cap F \neq \emptyset$ for every non-empty finite subset *B* of *F*.

Theorem 2.9 ([7]): Let $\mathscr{F}(Q)$ be the set of filters of a poset Q and A and B be *l*-filters of Q. Then the supremum $A \lor B$ of A and B in $\mathscr{F}(Q)$ is $A \lor B = \bigcup \{(a,b)^{lu} : a \in A, b \in B\}$.

Definition 2.10 ([16]): An L-fuzzy subset η of a poset Q is a function from Q into L.

Note that if *L* is a unit interval of real numbers [0,1], then the *L*-fuzzy subset η is the fuzzy subsets of *Q* which is introduced by L. Zadeh [17]. The set of all *L*-fuzzy subsets of *Q* is denoted by L^Q .

Definition 2.11 ([11]): Let $\eta \in L^Q$. Then for each $\alpha \in L$ the set $\eta_{\alpha} = \{x : \eta(x) \ge \alpha\}$ is called the level subset or level cut of η at α .

Lemma 2.12 ([9]): Let $\eta \in L^Q$. Then $\eta(x) = \sup\{\alpha \in L : x \in \eta_\alpha\}$ for all $x \in Q$.

Definition 2.13 ([16]): Let $v, \sigma \in L^Q$. Define a binary relation " \subseteq " on L^Q by $v \subseteq \sigma$ if and only $v(x) \leq \sigma(x)$ for all $x \in Q$.

It is simple to verify that the binary relation " \subseteq " on L^Q is a partial order and it is called the *point wise ordering*.

Definition 2.14 ([18]): Let θ and η be in L^Q . Then the union of fuzzy subsets θ and η of X, denoted by $\theta \cup \eta$, is a fuzzy subset of Q defined by $(\theta \cup \eta)(x) = \theta(x) \lor \eta(x)$ for all $x \in Q$ and the intersection of fuzzy subsets θ and η of Q, denoted by $\theta \cap \eta$, is a fuzzy subset of X defined by $(\theta \cap \eta)(x) =$ $\theta(x) \land \eta(x)$ for all $x \in Q$.

More generally, the union and intersection of any family $\{\eta_i\}_{i\in\Delta}$ of *L*-fuzzy subsets of *Q*, denoted by $\bigcup_{i\in\Delta}\eta_i$ and $\bigcap_{i\in\Delta}\eta_i$ respectively, are defined by:

 $(\bigcup_{i \in \Delta} \eta_i)(x) = \sup_{i \in \Delta} \eta_i(x)$ and $\bigcap_{i \in \Delta} \eta_i = \inf_{i \in \Delta} \eta_i(x)$ for all $x \in Q$, respectively.

Definition 2.15 ([10]): An L-fuzzy subset η of a lattice Q with 1 is said to be an L -fuzzy filter of Q; if $\eta(1) = 1$ and $\eta(a \wedge b) = \eta(a) \wedge \eta(b)$ for all $a, b \in Q$.

Definition 2.16: Let η be L- fuzzy subset of a poset Q. The smallest fuzzy filter of Q containing η is called a fuzzy filter generated by η and is denoted by $[\eta)$.

III. L-FUZZY FILTERS OF A POSET

In this section, we notify the concept of *L*-fuzzy filters of a poset and give several characterizations of them. Throughout this paper, Q stands for a poset (Q, \leq) with 1 unless otherwise stated. We begin with the following

Definition 3.1: An L-fuzzy subset η of Q is called an L-fuzzy closed filter if it fulfills the following conditions:

1) $\eta(1) = 1$ and

2) for any subset *S* of *Q*, $\eta(x) \ge \inf{\{\eta(a) : a \in S\}} \forall x \in S^{lu}$.

Lemma 3.2: A subset *F* of *Q* is a closed filter of *Q* if and only if its characteristic map χ_F is an *L*-fuzzy closed filter of *Q*.

Proof: Suppose *F* is a closed filter of *Q*. Since 1 is in $F^{lu} \subseteq F$, we have $\chi_F(1) = 1$. Again let *S* be any subset of *Q* and $x \in S^{lu}$. Then if $S \subseteq F$, we have $S^{lu} \subseteq F^{lu} \subseteq F$ and $\chi_F(a) = 1$ for all $a \in S$. Therefore $\chi_F(x) = 1 = \inf\{\chi_F(a) : a \in S\}$. Again if $S \nsubseteq F$, then there is $c \in S$ such that $c \notin F$ and hence $\chi_F(c) = 0$ and hence $\chi_F(x) \ge 0 = \inf\{\chi_F(a) : a \in S\}$. Thus in either cases, $\chi_F(x) \ge \inf\{\chi_F(a) : a \in S\}$ for all $x \in S^{lu}$ and $S \subseteq Q$. Therefore, χ_F is an *L*-fuzzy closed filter. Since $\chi_F(1) = 1$, we have $1 \in F$, that is $\{1\} = Q^u \subseteq F$. Let $x \in F^{lu}$. Then by hypotheses, $\chi_F(x) \ge \inf\{\chi_F(a) : a \in F\} = 1$. This implies $\chi_F(x) = 1$ and hence $x \in F$. Therefore, $F^{lu} \subseteq F$ and hence *F* is a closed filter. This proves the result.

The following result characterizes the L-fuzzy closed filter of Q in terms of its level subsets.

Lemma 3.3: Let η be in L^Q . Then η is an L-fuzzy closed filter of Q if and only if η_{α} is a closed filter of Q for all $\alpha \in L$.

Proof: Let η be an *L*- fuzzy closed filter of Q and $\alpha \in L$. Then $\eta(1) = 1 \ge \alpha$ and hence $1 \in \eta_{\alpha}$, i.e., $\{1\} = Q^{u} \subseteq \eta_{\alpha}$. Again let $x \in (\eta_{\alpha})^{lu}$. Then $\eta(x) \ge \inf\{\eta(a) : a \in \eta_{\alpha}\} \ge \alpha$ and hence $x \in \eta_{\alpha}$. Therefore $(\eta_{\alpha})^{lu} \subseteq \eta_{\alpha}$ and hence η_{α} is a closed filter.

Conversely, let η_{α} is a closed filter of Q for all $\alpha \in L$. In particular η_1 is a closed filter. Since $1 \in (\eta_1)^{lu} \subseteq \eta_1$, we have $\eta(1) = 1$.

Again let *S* be any subset of *Q*. Put $\alpha = \inf\{\eta(a) : a \in S\}$. Then $\eta(a) \ge \alpha \ \forall a \in S$ and hence $S \subseteq \mu_{\alpha}$. This implies $S^{lu} \subseteq \mu_{\alpha}^{lu} \subseteq \mu_{\alpha}$. Now $x \in S^{lu} \Rightarrow x \in \eta_{\alpha} \Rightarrow \eta(x) \ge \alpha = \inf\{\eta(a) : a \in S\}$. Therefore η is an *L*-fuzzy closed filter of *Q*. This proves the result.

Lemma 3.4: Let η be fuzzy closed filter of a poset Q. Then η is iso-tone, in the sense that $\eta(x) \leq \eta(y)$ whenever $x \leq y$.

Proof: Let $x, y \in Q$ such that $x \leq y$. Put $\eta(x) = \alpha$. Since η is a fuzzy closed filter, η_{α} is a closed filter of Q and hence $(\eta_{\alpha})^{lu} \subseteq \eta_{\alpha}$. Now $\eta(x) = \alpha \Rightarrow x \in \eta_{\alpha} \Rightarrow x^{u} = \{x\}^{lu} \subseteq (\eta_{\alpha})^{lu} \subseteq \eta_{\alpha}$. Thus $x \leq y \Rightarrow y \in x^{u} \Rightarrow y \in \eta_{\alpha}$ and hence $\eta(x) = \alpha \leq \eta(y)$. This proves the result.

Theorem 3.5: Let (Q, \leq) be a lattice. Then an *L*-fuzzy subset η of *Q* is an *L*-fuzzy closed filter in the poset *Q* if and only if an *L*-fuzzy filter in the lattice *Q*.

Proof: Let η be an *L*-fuzzy filter in the poset *Q* and $a, b \in Q$. Then $\eta(1) = 1$ and since $S = \{a, b\} \subseteq Q$ and $a \wedge b \in S^{lu}$,

we have $\eta(a \wedge b) \ge \inf\{\eta(x) : x \in S\} = \eta(a) \wedge \eta(b)$. Again since η is iso-tone, we have $\eta(a \wedge b) \le \eta(a)$ and $\eta(a \wedge b) \le$ $\eta(b)$ and hence we have $\eta(a) \wedge \eta(b) \le \eta(a \wedge b)$. Therefore $\eta(a \wedge b) = \eta(a) \wedge \eta(b)$ and hence η is an *L*-fuzzy filter in the lattice *Q*. Conversely suppose μ be an *L*-fuzzy filter in the lattice *Q*. Then $\eta(1) = 1$ and $\eta(a \wedge b) = \eta(a) \wedge \mu(b) \forall a, b \in$ *Q*. Let $S \subseteq Q$ and $x \in (S)^{lu}$. Then *x* is an upper bound of $(S)^l$. Since $\inf S \in (A)^l$, we have $x \ge \inf S$ and hence we have $\eta(x) \ge \eta(\inf S) = \inf\{\eta(a) : a \in S\}$. Therefore η is an *L*-fuzzy closed filter in the poset *Q*. This proves the result.

Lemma 3.6: The intersection of any family of *L*-fuzzy closed filters is an *L*-fuzzy closed filter.

Theorem 3.7: Let $[S]_C$ be a closed filter generated by a subset *S* of *Q* and χ_S be its characteristic functions. Then the $[\chi_S) = \chi_{[S]_C}$.

Proof: Since $[S)_C$ is a closed filter of Q containing S, by Lemma 3.2, we have $\chi_{[S)_C}$ is a fuzzy closed filter. Again since $S \subseteq [S)_C$, clearly we have $\chi_S \subseteq \chi_{[S)_C}$. Now, we show that it is the smallest L- fuzzy closed filter containing χ_S . Let η be an L-fuzzy closed filter such that $\chi_S \subseteq \eta$. Then $\eta(a) = 1$ for all $a \in S$. Now we claim $\chi_{[S]_C} \subseteq \eta$. Let $x \in Q$. If $x \notin [S]_C$, then $\chi_{[S]}(x) = 0 \le \eta(x)$. If $x \in [S]_C$, then $x \in T^{lu}$ for some subset T of S and hence $\eta(x) \ge \inf{\{\eta(b) : b \in T\}} = 1 = \chi_{[S]_C}(x)$. Hence in either cases, $\chi_{[S]_C}(x) \le \eta(x)$ for all $x \in Q$ and hence $\chi_{[S]_C} \subseteq \eta$. This proves the theorem.

In the following theorem we characterize a fuzzy closed filter generated by a fuzzy subset of Q in terms of its level closed filters.

Theorem 3.8: Let $\eta \in L^Q$. Then the *L*-fuzzy subset $\hat{\eta}$ of Q defined by $\hat{\eta}(x) = \sup\{\alpha \in L : x \in [\eta_\alpha)_C\}$ for all $x \in Q$ is a fuzzy closed filter of Q generated by η , where $[\mu_\alpha)_C$ is a closed filter generated by η_α .

Proof: Now we show $\hat{\eta}$ is the smallest fuzzy closed filter containing η . Let $x \in Q$ and put $\eta(x) = \beta$. Then $x \in \eta_{\beta} \subseteq [\eta_{\beta})_C \Rightarrow \beta \in \{\alpha \in L : x \in [\eta_{\alpha})_C\}$. Thus $\eta(x) = \beta \leq \sup\{\alpha \in L : x \in [\eta_{\alpha})_C\} = \hat{\eta}(x)$ and hence $\eta \subseteq \hat{\mu}$. Again since $\{1\} = Q^u \subseteq [\eta_{\alpha})_C$ for all $\alpha \in L$, clearly we have $\hat{\eta}(1) = 1$. Let *S* be any subset of *Q* and $x \in S^{lu}$. Now $\inf\{\hat{\eta}(a) : a \in S\} = \inf\{\sup\{\alpha_a : a \in [\eta_{\alpha_a})_C\} : a \in S\} = \sup\{\inf\{\alpha_a : a \in S\} : a \in [\eta_{\alpha_a})_C\}$. Put $\lambda = \inf\{\alpha_a : a \in S\}$. Then $\lambda \leq \alpha_a$ for all $a \in S$ and hence $[\eta_{\alpha_a})_C \subseteq [\eta_{\lambda})_C \forall a \in S$. Therefore $S \subseteq [\eta_{\lambda})_C$ and hence $x \in S^{lu} \subseteq [\eta_{\lambda})^{lu} \subseteq [\eta_{\lambda})$. So

$$\begin{split} \inf\{ \boldsymbol{\hat{\eta}}(a) : a \in S \} &= \sup\{\inf\{\alpha_a : a \in S\} : a \in [\boldsymbol{\eta}_{\alpha_a})\} \\ &\leq \sup\{\lambda \in L : x \in [\boldsymbol{\eta}_{\lambda})\} \\ &= \boldsymbol{\hat{\eta}}(x) \end{split}$$

Therefore $\hat{\eta}$ is an *L*-fuzzy closed filter. Again let θ be any *L*-fuzzy closed filter of *Q* such that $\eta \subseteq \theta$. Then $\eta_{\alpha} \subseteq \theta_{\alpha}$ and θ_{α} is a closed filter for all $\alpha \in L$ and hence $[\eta_{\alpha}) \subseteq [\theta_{\alpha}) = \theta_{\alpha}$. Thus for any $x \in Q$, $\hat{\eta}(x) = \sup\{\alpha \in L : x \in [\eta_{\alpha})\} \le \sup\{\alpha \in L : x \in \theta_{\alpha}\} = \theta(x)$ and hence $\hat{\eta} \subseteq \theta$. This proves that $\hat{\eta} = [\eta)$.

In the following, we give an algebraic characterization of L-fuzzy Closed filter generated by fuzzy subset of Q.

Theorem 3.9: Let $\eta \in L^Q$. Then the fuzzy subset $\overline{\eta}$ defined by

$$\overline{\eta}(x) = \begin{cases} 1 & ifx = 1\\ \sup\{\inf_{a \in S} \eta(a) : x \in S^{lu}, S \subseteq Q\} & ifx \neq 1 \end{cases}$$

is a fuzzy closed filter of Q generated by η .

Proof: It is enough to show that $\bar{\eta} = \hat{\eta}$ where $\hat{\eta}$ is an *L*-fuzzy subset given in the above theorem. Let $x \in Q$. If x = 1, then $\bar{\eta}(x) = 1 = \hat{\eta}(x)$. Let $x \neq 0$. Put $A_x = \{\inf_{a \in S} \eta(a) : S \subseteq Q \text{ and } x \in S^{lu}\}$ and $B_x = \{\alpha : x \in [\eta_{\alpha})_C\}$. Now we show $\sup A_x = \sup B_x$. Let $\alpha \in A_x$. Then $\alpha = \inf_{a \in A} \eta(a)$ for some subset *S* of *Q* such that $x \in S^{lu}$. This implies that $\alpha \leq \eta(a)$ for all $a \in S$ and hence $S \subseteq \eta_\alpha \subseteq [\eta_\alpha)$. Thus $S^{lu} \subseteq (\eta_\alpha)^{lu} \subseteq [\eta_\alpha)$ and hence $x \in [\eta_\alpha)$. Therefore $\alpha \in B_x$. Thus $A_x \subseteq B_x$ and hence $\sup A_x \leq \sup B_x$. Again let $\alpha \in B_x$. Then $x \in [\eta_\alpha)$. Since $[\mu_\alpha)_C = \bigcup \{S^{lu} : S \subseteq \eta_\alpha\}$, we have $x \in S^{lu}$ for some subset *S* of η_α . This implies $\eta(a) \geq \alpha$ for all $a \in S$ and hence $\inf \{\eta(a) : a \in S\} \geq \alpha$. Thus $\beta = \inf \{\eta(a) : a \in S\} \in A_x$. Thus for each $\alpha \in B_x$ we get $\beta \in A_x$ such that $\alpha \leq \beta$ and hence $\sup A_x \geq \sup B_x$. Therefore $\sup A_x = \sup B_x$ and hence $\overline{\eta} = \hat{\eta}$.

The above result yields the following.

Theorem 3.10: Let $\mathscr{FCF}(Q)$ be the set of all *L*-fuzzy closed filters of Q. Then $(\mathscr{FCF}(Q), \subseteq)$ forms a complete lattice with respect to the point wise ordering " \subseteq ", in which the supremum $sup_{i\in\Delta}\mu_i$ and the inifimum $\inf_{i\in\Delta}\eta_i$ of any family $\{\eta_i : i \in \Delta\}$ in $\mathscr{FCF}(Q)$ are given by:

 $sup_{i\in\Delta}\eta_i = \overline{\bigcup_{i\in\Delta}\{\eta_i\}}$ and $\inf_{i\in\Delta}\eta_i = \bigcap_{i\in\Delta}\eta_i$.

Corollary 3.11: For any *L*-fuzzy closed filters η and v of Q, the supremum $\eta \lor v$ and the infimum $\eta \land v$ of η and v in $\mathscr{FCF}(Q)$ respectively are:

 $\eta \lor v = \overline{\eta \cup v}$ and $\eta \land v = \eta \cap v$.

Now we introduce the fuzzy version of a filter (dual ideal) of a poset introduced by O. Frink [4].

Definition 3.12: An *L*-fuzzy subset η of *Q* is an *L*-fuzzy Frink filter if it satisfies the following conditions:

- 1) $\eta(1) = 1$ and
- 2) for any finite subset F of Q, $\eta(x) \ge \inf{\{\eta(a) : a \in F\}}$ $\forall x \in F^{lu}$

Lemma 3.13: Let $\eta \in L^Q$. Then η is an *L*-fuzzy Frink filter of Q if and only if η_{α} is a Frink filter of Q for all $\alpha \in L$.

Lemma 3.14: Let η be fuzzy Frink filter of a poset Q. Then η is iso-tone, in the sense that $\eta(x) \le \eta(y)$ whenever $x \le y$.

Corollary 3.15: A subset S of Q is a Frink filter of Q if and only if its characteristic map χ_S is an L-fuzzy Frink filter of Q.

Theorem 3.16: Let (Q, \leq) be a lattice and $\eta \in L^Q$. Then η is an *L*-fuzzy Frink filter in the poset *Q* if and only it an *L*-fuzzy filter in the lattice *Q*.

Lemma 3.17: The intersection of any family of *L*-fuzzy Frink-filters is an *L*-fuzzy Frink filter.

Theorem 3.18: Let $[S]_F$ be a Frink-filter generated by subset *S* of *Q* and χ_S be its characteristic functions. Then $[\chi_S) = \chi_{[S]_F}$. In the following theorems, we give characterizations of *L*-Fuzzy Frink filters generated by fuzzy subset of *Q*.

Theorem 3.19: Let $\eta \in L^Q$. Define a fuzzy subset $\hat{\eta}$ of Qby $\hat{\eta}(x) = \sup\{\alpha \in L : x \in [\eta_\alpha)_F\}$ for all $x \in Q$ where $[\eta_\alpha)_F$ a Frink filter generated by η_{α} , where $[\eta_{\alpha})_F$ is a Frink filter generated by η_{α} . Then $\hat{\eta}$ is an *L*-fuzzy Frink filter of *Q* generated by η .

In the following, we give an algebraic characterization of L-fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.20: Let η be a fuzzy subset of Q. Then the fuzzy subset $\overrightarrow{\eta}$ defined by

$$\overrightarrow{\eta}(x) = \begin{cases} 1 & ifx = 1\\ \sup\{\inf_{a \in F} \eta(a) : F \subset \mathbb{Q}, x \in F^{lu}\} & ifx \neq 1 \end{cases}$$

is a Frink fuzzy filter of Q generated by η .

Theorem 3.21: Let $\mathscr{FFP}(Q)$ be the of all *L*-fuzzy Frink filter of *Q*. Then $(\mathscr{FFP}(Q), \subseteq)$ forms a complete lattice with respect to point wise ordering " \subseteq ", in which the supremum and the infimum of any family $\{\eta_i : i \in \Delta\}$ in $\mathscr{FFP}(Q)$ respectively are: $\sup_{i \in \Delta} \eta_i = \bigcup_{i \in \Delta} \{\eta_i\}$ and $\inf_{i \in \Delta} \eta_i = \bigcap_{i \in \Delta} \eta_i$.

Corollary 3.22: For any *L*-fuzzy Frink ideals η and v of Q in the supremum $\eta \lor v$ and the infimum $\eta \land v$ of η and v in $\mathscr{FF}(Q)$ respectively are: $\eta \lor v = \overline{\eta \cup v}$ and $\eta \land v = \eta \cap v$. Now we introduce the fuzzy version of semi-filters and V-filters of a poset introduced by P.V. Venkatanarasimhan [5] and [6].

Definition 3.23: η in L^Q is said to be an *L*-fuzzy semi-filter or *L*-fuzzy order filter if $\eta(x) \leq \eta(y)$ whenever $x \leq y$ in *Q*.

Definition 3.24: η in L^Q is said to be an L- fuzzy V-filter if it satisfies the following conditions:

1) for any $x, y \in Q$ $\eta(x) \le \eta(y)$ whenever $x \le y$ and

2) for any non-empty finite subset *B* of *Q*, if $\inf B$ exists then $\eta(\inf B) \ge \inf{\{\eta(b) : b \in B\}}$.

Theorem 3.25: Every *L*-fuzzy Frink filter is an *L*-fuzzy *V*-filter.

Proof: Let η be an *L*-fuzzy Frink filter and let $x, y \in Q$ such that $x \leq y$. Put $\eta(x) = \alpha$. Since η is an *L*-fuzzy Frink filter, η_{α} is a Frink filter of *Q*. Now $\eta(x) = \alpha \Rightarrow x \in \eta_{\alpha} \Rightarrow$ $\{x\}^{lu} \subseteq \eta_{\alpha}$. Now $x \leq y \Rightarrow y \in x^{u} = x^{lu} \subseteq \eta_{\alpha} \Rightarrow \eta(x) = \alpha \leq$ $\eta(y)$. Again let *B* be any nonempty subset of *Q* such that inf *B* exists in *Q*. Then inf $B \in B^{lu}$ and hence $\eta(\inf B) \geq \inf\{\eta(a) :$ $a \in B\}$. Therefore η is an *L*-fuzzy *V*-filter.

Now we introduce the fuzzy version filters of a poset introduced by Halaš [7] which seems to be a suitable generalization of the usual concept of *L*-fuzzy filter of a lattice.

Definition 3.26: $\eta \in L^Q$ is called an *L*- fuzzy filter in the sense of Halaš if it fulfills the followings:

1) $\eta(1) = 1$ and

2) for any $a, b \in Q$, $\eta(x) \ge \eta(a) \land \eta(b)$ for all $x \in (a, b)^{lu}$ In the rest of this paper, an *L*-fuzzy filter of a poset will mean an *L*-fuzzy filter in the sense of Halaš.

Lemma 3.27: $\eta \in L^Q$ is an *L*-fuzzy filter of *Q* if and only if η_{α} is a filter of *Q* in the sense of Halaš for all $\alpha \in L$.

Corollary 3.28: A subset *S* of *Q* is a filter of *Q* in the sense of Halaš if and only if its characteristic map χ_S is an *L*-fuzzy filter of *Q*.

Lemma 3.29: If η is an *L*-fuzzy filter of *Q*, then the following assertions hold:

1) for any $x, y \in Q$ $\eta(x) \le \eta(y)$ whenever $x \le y$.

2) for any $x, y \in Q$, $\eta(x \wedge y) \ge \mu(x) \wedge \eta(y)$ whenever $x \wedge y$ exists.

Theorem 3.30: Let (Q, \leq) be a lattice. Then an *L*-fuzzy subset η of Q is an *L*-fuzzy filter in the poset Q if and only if an *L*-fuzzy filter is in the lattice Q.

Theorem 3.31: Let $[S]_H$ be a filter generated by subset S of Q in the sense of Halaš and χ_S be its characteristic functions. Then $[\chi_S) = \chi_{[S]_H}$.

Lemma 3.32: The intersection of any family of *L*-fuzzy filters is an *L*- fuzzy filter.

Now we give characterization of an L-fuzzy filter generated by a fuzzy subset of a poset Q.

Definition 3.33: Let η be a fuzzy subset of Q and \mathcal{N} be a set of positive integers. Define fuzzy subsets of Q inductively as follows: $B_1^{\eta}(x) = \sup\{\eta(a) \land \eta(b) : x \in (a, b)^{lu}\}$ and $B_n^{\eta}(x) =$ $\sup\{B_{n-1}^{\eta}(a) \land B_{n-1}^{\eta}(b) : x \in (a, b)^{lu}\}$ for each $n \ge 2$ and $a, b \in Q$.

Theorem 3.34: The set $\{B_n^{\eta} : n \in \mathcal{N}\}$ forms a chain and the fuzzy subset $\hat{\eta}$ defined by $\hat{\eta}(x) = \sup\{B_n^{\eta}(x) : n \in \mathcal{N}\}$ is a fuzzy filter generated by η .

Proof: Let $x \in Q$ and $n \in \mathcal{N}$. Then

$$B_{n+1}^{\eta}(x) = \sup\{B_n^{\eta}(a) \land B_n^{\eta}(b) : x \in (a,b)^{lu}\} \\ \geq B_n^{\eta}(x) \land B_n^{\eta}(x) \text{ (since } x \in x^u = (x,x)^{lu}) \\ = B_n^{\eta}(x) \forall x \in Q.$$

Therefore $B_n^{\eta} \subseteq B_{n+1}^{\eta}$ for each $n \in \mathcal{N}$ and hence $\{B_n^{\eta} : n \in \mathcal{N}\}$ is a chain. Now we show $\hat{\eta}$ is the smallest fuzzy filter containing η .

Since
$$\hat{\eta}(x) = \sup\{B_n^{\eta}(x) : n \in \mathcal{N}\}\$$

 $\geq B_1^{\eta}(x)\$
 $= \sup\{\eta(a) \land \eta(b) : x \in (a,b)^{lu}\}\$
 $\geq \eta(x) \land \eta(x) \text{ (since } x \in (x,x)^{lu})\$
 $= \eta(x) \forall x \in O.$

Therefore $\eta \subseteq \hat{\eta}$. Let $a, b \in L$ and $x \in (a, b)^{lu}$.

Now
$$\hat{\eta}(x) = \sup\{B_n^{\eta}(x) : n \in \mathcal{N}\}\$$

 $\geq B_n^{\eta}(x) \text{ for all } n \in \mathcal{N}\$
 $= \sup\{B_{n-1}^{\eta}(y) \land B_{n-1}^{\eta}(z) : x \in (y,z)^{lu}\}\$
for all $n \geq 2$.
 $\geq B_{n-1}^{\eta}(a) \land B_{n-1}^{\eta}(b) \forall n \geq 2\$
(since $x \in (a,b)^{ul}$)
 $= B_m^{\eta}(a) \land B_m^{\eta}(b) \forall m \in \mathcal{N}\$
Thus $\hat{\eta}(x) \geq \sup\{B_n^{\eta}(a) \land B_m^{\eta}(b) : m \in \mathcal{N}\}\$

Therefore $\hat{\eta}$ is a fuzzy filter. Again let θ be any *L*-fuzzy filter of Q such that $\eta \subseteq \theta$. Now let $a, b \in Q$ and $x \in (a,b)^{lu}$. Then $\theta(x) \ge \theta(a) \land \theta(b) \ge \eta(a) \land \eta(b)$. This implies $\theta(x) \ge \sup\{\eta(a) \land \eta(b) : x \in (a,b)^{ul}\} = B_1^{\eta}(x)$. Therefore $\theta(x) \ge B_1^{\eta}(x)$ for all $x \in (a,b)^{lu}$. Again for any $x \in (a,b)^{lu}$ we have $\theta(x) \ge \theta(a) \land \theta(b) \ge B_1^{\eta}(a) \land B_1^{\eta}(b)$. This implies $\theta(x) \ge \sup\{B_1^{\eta}(a) \land B_1^{\eta}(b) : x \in (a,b)^{lu}\} = B_2^{\eta}(x)$. Thus by

induction we have $\theta(x) \ge B_n^{\eta}(x) \ \forall n \in \mathcal{N}$ and $\forall x \in (a,b)^{lu}$. Thus for any $x \in Q$, we have

$$\begin{aligned} \hat{\eta}(x) &= \sup\{B_n^{\eta}(x) : n \in \mathcal{N}\} \\ &= \sup\{B_{n-1}^{\eta}(a) \wedge B_{n-1}^{\eta}(b) : n \in \mathcal{N}, x \in (a,b)^{lu}\} \\ &\leq \sup\{\theta(a) \wedge \theta(b) : x \in (a,b)^{lu}\} \\ &\quad (since, a, b \in (a,b)^{lu}.) \\ &\leq \theta(x) \end{aligned}$$

Therefore $\theta \supseteq \hat{\eta}$. This proves the theorem.

The above result yields the following.

Theorem 3.35: Let $\mathscr{FF}(Q)$ be the set of all *L*-fuzzy filter of Q. Then $(\mathscr{FF}(Q), \subseteq)$ forms a complete lattice with respect to the point wise ordering " \subseteq ", in which the supremum and the infimum of any family $\{\eta_i : i \in \Delta\}$ in $\mathscr{FF}(Q)$ respectively are: $(sup_{i\in\Delta}\eta_i)(x) = \sup\{B_n^{\bigcup_{i\in\Delta}\eta_i}(x) : n \in \mathscr{N}\}$ and $(\inf_{i\in\Delta}\eta_i)(x) = (\bigcap_{i\in\Delta}\eta_i)(x)$ for any $x \in Q$.

Corollary 3.36: For any *L*-fuzzy filter η and v of Q, the supremum $\eta \lor v$ and the infimum $\eta \land v$ of η and v in $\mathscr{FF}(Q)$ respectively are: $(\eta \lor v)(x) = \sup\{B_n^{\eta \cup v}(x) : n \in \mathscr{N}\}$ and $(\eta \land v)(x) = (\eta \cap v)(x)$ for any $x \in Q$.

Theorem 3.37: The following implications hold, where all of them are not equivalent:

- 1) *L*-fuzzy closed filter \Longrightarrow *L*-fuzzy Frink filter \Longrightarrow *L*-fuzzy *V*-filter \Longrightarrow *L*-fuzzy semi-filter.
- 2) L- fuzzy closed filter \implies L-fuzzy Frink filter \implies L-fuzzy filter \implies L-fuzzy semi-filter.

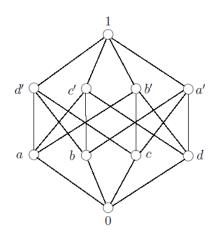
The following examples show that the converse of the above implications do not hold in general.

Example 3.38: Consider the Poset $([0,1],\leq)$ with the usual ordering. Define a fuzzy subset $\eta : [0,1] \longrightarrow [0,1]$ by

$$\eta(x) = \begin{cases} 1 & ifx \in (\frac{1}{2}, 1] \\ 0 & ifx \in [0, \frac{1}{2}] \end{cases}$$

Then η is an *L*- fuzzy Frink filter but not an *L*- fuzzy closed filter.

Example 3.39: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $v : Q \longrightarrow [0,1]$ by v(1) = v(a') = 1, v(a) = v(b) = v(c) = v(d) = v(0) = 0.2, v(b') = 0.6, v(c') = 0.5 and v(d') = 0.7. Then v is an L-fuzzy filter



but not an L- fuzzy Frink-filter.

Example 3.40: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $\theta : Q \longrightarrow [0,1]$ by $\theta(U) = 1$, $\theta(L) = \theta(M) = 0.8$ and $\theta(N) = 0.6$. Then θ is an *L*-fuzzy

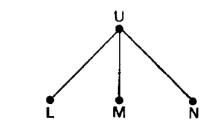


Fig. 2. A Poset.

V-filter but not an L- fuzzy Frink-filter.

Example 3.41: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $\sigma: Q \longrightarrow [0,1]$ by $\sigma(1) = 1$, $\sigma(a) = 0.8$, $\sigma(b) = 0.9$ and $\sigma(0) = 0.2$.

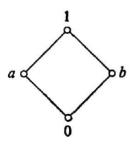


Fig. 3. A Poset.

Then σ is an *L*-fuzzy semi-filter but not an *L*-fuzzy filter.

Theorem 3.42: Let $x \in Q$ and $\alpha \in L$. Define an *L*-fuzzy subset α^x of Q by

$$\alpha^{x}(y) = \begin{cases} 1 & \text{if } y \in [x) \\ \alpha & \text{if } y \notin [x) \end{cases}$$

for all $y \in Q$. Then α^x is an *L*-fuzzy filter of *Q*.

Proof: By the definition of α^x , we clearly have $\alpha_x(1) = 1$. Let $a, b \in Q$ and $y \in (a, b)^{lu}$. Now if $a, b \in [x)$, then we have $(a, b)^{lu} \subseteq [x)$ and $\alpha^x(a) = \alpha^x(b) = 1$. Thus $\alpha^x(y) = 1 = 1 \land 1 = \alpha^x(a) \land \alpha^x(b)$. Again if $a \notin [x)$ or $b \notin [x)$, we have $\alpha^x(a) \land \alpha^x(b) = \alpha$ and hence $\alpha^x(y) \ge \alpha = \alpha^x(a) \land \alpha^x(b)$. Therefore in either cases we have $\alpha^x(y) \ge \alpha^x(a) \land \alpha^x(b)$ for all $y \in (a, b)^{lu}$ and hence α^x is an *L*-fuzzy filter.

Definition 3.43: The *L*-fuzzy filter α^x defined above is called the α -level principal fuzzy filter corresponding to *x*.

Definition 3.44: An *L*-fuzzy filter μ of a poset *Q* is called an *l*-*L*-fuzzy filter if for any $a, b \in Q$, there exists $x \in (a, b)^l$ such that $\mu(x) = \mu(a) \wedge \mu(b)$.

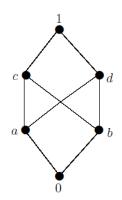
Lemma 3.45: An *L*-fuzzy filter μ of *Q* is an *l*-*L*-fuzzy filter of *Q* if and only if μ_{α} is an *l*-filter of *Q* for all $\alpha \in L$.

Proof: Suppose μ is an *l*-*L*-fuzzy filter and $\alpha \in L$. Since μ is an *L*- fuzzy filter, μ_{α} is a filter of *Q*. Let $a, b \in \mu_{\alpha}$. Then $\mu(a) \ge \alpha$ and $\mu(b) \ge \alpha$ and hence $\mu(a) \land \mu(b) \ge \alpha$. Also since μ is an *l*-*L*- fuzzy filter there exists $x \in (a, b)^l$ such that $\mu(x) = \mu(a) \land \mu(b)$ and hence $\mu(x) \ge \alpha$. Therefore $x \in \mu_{\alpha} \cap (a, b)^l$

and hence $\mu_{\alpha} \cap (a,b)^{l} \neq \emptyset$. Therefore μ_{α} is an *l*-filter of a poset *Q*. Conversely suppose μ_{α} is an *l*-filter of a poset *Q* for all $\alpha \in L$. Then μ is an *L*-fuzzy filter. Let $a, b \in Q$ and put $\alpha = \mu(a) \wedge \mu(b)$. Then $\mu_{\alpha} \cap (a,b)^{l} \neq \emptyset$. Let $x \in \mu_{\alpha} \cap (a,b)^{l}$. Then $x \in \mu_{\alpha}$ and $x \in (a,b)^{l}$. This implies $\mu(x) \geq \alpha = \mu(a) \wedge \mu(b)$ and $x \leq a, x \leq b$. Since μ is iso-tone we have $\mu(x) \leq \mu(a)$ and $\mu(x) \leq \mu(b)$ and hence $\mu(x) \leq \mu(a) \wedge \mu(b)$. Therefore there exists $x \in (a,b)^{l}$ such that $\mu(x) = \mu(a) \wedge \mu(b)$ and hence μ is an *l*-*L*-fuzzy filter.

Corollary 3.46: Let (Q, \leq) be a poset with 0 and let $x \in Q$ and $\alpha \in L$. Then the α -level principal fuzzy filter corresponding to x is an *l*-*L*-fuzzy filter.

Remark 3.47: Every *L*-fuzzy filter is not an *l*-*L*-fuzzy filter. For example consider the poset (Q, \leq) depicted in the figure below and define a fuzzy subset $\mu : Q \longrightarrow [0,1]$ by $\mu(1) = 1$, $\mu(c) = \mu(d) = 0.9$, $\mu(a) = \mu(b) = \mu(0) = 0.7$. Then μ is an *L*-fuzzy filter but not an *l*-*L*-fuzzy filter.



Theorem 3.48: Every *l-L*-fuzzy filter is an *L*- fuzzy Frink filter.

Proof: Suppose η is an *l*-*L*-fuzzy filter. Let *F* be a finite subset of *Q*. Then there exists $y \in F^l$ such that $\eta(y) = inf\{\eta(a) : a \in F\}$.

Again
$$x \in F^{lu} \Rightarrow s \le x \forall s \in F^l$$

 $\Rightarrow y \le x \text{ (since } y \in F^l)$
 $\Rightarrow \eta(x) \ge \eta(y) = \inf\{\eta(a) : a \in F\}$
 $\Rightarrow \eta(x) \ge \inf\{\eta(a) : a \in F\}$

Therefore η is an *L*-fuzzy Frink filter.

Theorem 3.49: Let η and θ be *l*-*L*-fuzzy filters of *Q*. Then the supremum $\eta \lor \theta$ of η and θ in $\mathscr{FF}(Q)$ is given by: $(\eta \lor \theta)(x) = \sup\{\eta(a) \land \theta(b) : x \in (a,b)^{lu}\}$ for all $x \in Q$.

Proof: Let σ be an *L*-fuzzy subset of *Q* defined by $\sigma(x) = \sup\{\eta(a) \land \theta(b) : x \in (a,b)^{lu}\} \forall x \in Q$. Now we claim σ is the smallest *L*-fuzzy filter of *Q* containing $\eta \cup \theta$. Let $x \in Q$.

Now
$$\sigma(x) = \sup\{\eta(a) \land \theta(b) : x \in (a,b)^{lu}\}$$

 $\geq \eta(x) \land \theta(1), \text{ (since } x \in (x,1)^{lu})$
 $= \eta(x) \land 1 = \eta(x)$

and hence $\sigma \supseteq \eta$. Similarly we can show $\sigma \supseteq \theta$ and hence $\sigma \supseteq \eta \cup \theta$.

Let $a, b \in Q$ and $x \in (a, b)^{lu}$. Now

$$\begin{split} \sigma(a) \wedge \sigma(b) &= \sup\{\eta(c) \wedge \theta(d) : a \in (c,d)^{lu}\} \wedge \\ &\sup\{\eta(e) \wedge \theta(f) : b \in (e,f)^{lu}\} \\ &= \sup\{\eta(c) \wedge \theta(d) \wedge \eta(e) \wedge \theta(f) : \\ &a \in (c,d)^{lu}, b \in (e,f)^{lu}\} \\ &\leq \sup\{\eta(c) \wedge \eta(e) \wedge \theta(d) \wedge \theta(f) : \\ &a, b \in (c,d,e,f)^{lu}\} \end{split}$$

Again since η and θ are *l*-*L*-fuzzy filters, for each *c*, *e* and *d*, *f* there are $r \in (c, e)^l$ and $s \in (d, f)^l$ such that $\eta(r) = \eta(c) \wedge \eta(e)$ and $\theta(s) = \theta(d) \wedge \theta(f)$. Now

$$r \in (c,e)^{l} \text{ and } s \in (d,f)^{l} \implies \{c,d,e,f\}^{lu} \subseteq \{s,r\}^{lu}$$
$$\implies a,b \in \{s,r\}^{lu}$$
$$\implies (a,b)^{lu} \subseteq \{s,r\}^{lu}$$
$$\implies x \in \{s,r\}^{lu}$$

Thus $\sigma(a) \wedge \sigma(b) \leq \sup\{\eta(c) \wedge \eta(e) \wedge \theta(d) \wedge \theta(f) : a, b \in (c, d, e, f)^{lu}\} \leq \sup\{\eta(r) \wedge \theta(s) : x \in (r, s)^{lu}\} \leq \sigma(x)$ for all $x \in (a, b)^{lu}$ and hence σ is an *L*-fuzzy filter.

Let ϕ be any *L*-fuzzy filter of *Q* such that $\eta \cup \theta \subseteq \phi$. Now for any $x \in Q$, we have

$$\sigma(x) = \sup\{\eta(a) \land \theta(b) : x \in (a,b)^{lu}\} \\ \leq \sup\{\phi(a) \land \phi(b) : x \in (a,b)^{lu}\} \\ \leq \phi(x)$$

and hence $\sigma \subseteq \phi$. Therefore $\sigma = (\eta \cup \theta] = \eta \lor \theta$, that is σ is the supremum of η and θ in $\mathscr{FF}(Q)$.

REFERENCES

- B. Alaba, M. Taye, and D. Engidaw, "L-fuzzy ideals of a poset," Ann. Fuzzy Math. Inform., vol. 16, pp. 285–299, 2018.
- [2] G. Birkhoff, Lattice theory. American Mathematical Soc., 1940, vol. 25.
- [3] M. Stone, "The theory of representation for boolean algebras," *Transactions of the American Mathematical Society*, vol. 40, no. 1, pp. 37–111, 1936.
- [4] O. Frink, "Ideals in partially ordered sets," *The American Mathematical Monthly*, vol. 61, no. 4, pp. 223–234, 1954.
- [5] P. Venkatanarasimhan, "Pseudo-complements in posets," *Proceedings of the American Mathematical Society*, vol. 28, no. 1, pp. 9–17, 1971.
- [6] —, "Semi-ideals in posets," *Mathematische Annalen*, vol. 185, no. 4, pp. 338–348, 1970.
- [7] R. Halaš, "Annihilators and ideals in ordered sets," *Czechoslovak Mathematical Journal*, vol. 45, no. 1, pp. 127–134, 1995.
- [8] N. Ajmal and K. Thomas, "Fuzzy lattices," *Information sciences*, vol. 79, no. 3-4, pp. 271–291, 1994.
- [9] B. Koguep, C. Nkuimi, and C. Lele, "On fuzzy prime ideals of lattice," SJPAM, vol. 3, pp. 1–11, 2008.
- [10] T. Rao, C. Rao, D. Solomon, and D. Abeje, "Fuzzy ideals and filters of lattices," *Asian Journal of Current Engineering and Maths*, vol. 2, no. 4, 2013.
- [11] U. Swamy and D. Raju, "Fuzzy ideals and congruences of lattices," *Fuzzy sets and systems*, vol. 95, no. 2, pp. 249–253, 1998.
- [12] Y. Bo and W. Wangming, "Fuzzy ideals on a distributive lattice," Fuzzy sets and systems, vol. 35, no. 2, pp. 231–240, 1990.
- [13] B. Davey and H. Priestley, *Introduction to lattices and order*. Cambridge university press, 2002.
- [14] G. Grätzer, General lattice theory. Springer Science & Business Media, 2002.
- [15] R. Halaš and J. Rachŭnek, "Polars and prime ideals in ordered sets," Discuss. Math., Algebra Stoch. Methods, vol. 15, pp. 43–59, 1995.
- [16] J. Goguen, "L-fuzzy sets," Journal of mathematical analysis and applications, vol. 18, no. 1, pp. 145–174, 1967.

- [17] L. Zadeh, "Fuzzy sets," *Information and control*, vol. 8, no. 3, pp. 338–353, 1965.
 [18] J. Mordeson and D. Malik, *Fuzzy commutative algebra*. World scientific, 1998.